扫一扫加入微信交流群
与考生自由互动、并且能直接与专业老师进行交流、解答。
关注公众号
服务时间08:00-24:00免费课程/题库
微信扫一扫
公式分类 | 公式表达式 | |||
乘法与因式分解 | a2-b2=(a+b)(a-b) | a3+b3=(a+b)(a2-ab+b2) | a3-b3=(a-b)(a2+ab+b2) | |
三角不等式 | |a+b|≤|a|+|b| | |a-b|≤|a|+|b| | |a|≤b<=>-b≤a≤b | |
|a-b|≥|a|-|b| | -|a|≤a≤|a| | |||
一元二次方程的解 | -b+√(b2-4ac)/2a | -b-b+√(b2-4ac)/2a | ||
根与系数的关系 | X1+X2=-b/a | X1*X2=c/a | 注:韦达定理 | |
判别式 | b2-4a=0 | 注:方程有相等的两实根 | ||
b2-4ac>0 | 注:方程有一个实根 | |||
b2-4ac<0 | 注:方程有共轭复数根 | |||
三角函数公式 | ||||
两角和公式 | sin(A+B)=sinAcosB+cosAsinB | sin(A-B)=sinAcosB-sinBcosA | ||
cos(A+B)=cosAcosB-sinAsinB | cos(A-B)=cosAcosB+sinAsinB | |||
tan(A+B)=(tanA+tanB)/(1-tanAtanB) | tan(A-B)=(tanA-tanB)/(1+tanAtanB) | |||
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) | ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) | |||
倍角公式 | tan2A=2tanA/(1-tan2A) | ctg2A=(ctg2A-1)/2ctga | ||
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a | ||||
半角公式 | sin(A/2)=√((1-cosA)/2) | sin(A/2)=-√((1-cosA)/2) | ||
cos(A/2)=√((1+cosA)/2) | cos(A/2)=-√((1+cosA)/2) | |||
tan(A/2)=√((1-cosA)/((1+cosA)) | tan(A/2)=-√((1-cosA)/((1+cosA)) | |||
ctg(A/2)=√((1+cosA)/((1-cosA)) | ctg(A/2)=-√((1+cosA)/((1-cosA)) | |||
和差化积 | 2sinAcosB=sin(A+B)+sin(A-B) | 2cosAsinB=sin(A+B)-sin(A-B) | ||
2cosAcosB=cos(A+B)-sin(A-B) | -2sinAsinB=cos(A+B)-cos(A-B) | |||
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 | cosA+cosB=2cos((A+B)/2)sin((A-B)/2) | |||
tanA+tanB=sin(A+B)/cosAcosB | tanA-tanB=sin(A-B)/cosAcosB | |||
ctgA+ctgBsin(A+B)/sinAsinB | -ctgA+ctgBsin(A+B)/sinAsinB | |||
某些数列前n项和 | 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 | 1+3+5+7+9+11+13+15+…+(2n-1)=n2 | ||
2+4+6+8+10+12+14+…+(2n)=n(n+1) | 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 | |||
13+23+33+43+53+63+…n3=n2(n+1)2/4 | 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 | |||
正弦定理 | a/sinA=b/sinB=c/sinC=2R | 注:其中 R 表示三角形的外接圆半径 | ||
余弦定理 | b2=a2+c2-2accosB | 注:角B是边a和边c的夹角 | ||
圆的标准方程 | (x-a)2+(y-b)2=r2 | 注:(a,b)是圆心坐标 | ||
圆的一般方程 | x2+y2+Dx+Ey+F=0 | 注:D2+E2-4F>0 | ||
抛物线标准方程 | y2=2px | y2=-2px | x2=2py | x2=-2py |
直棱柱侧面积 | S=c*h | 斜棱柱侧面积 | S=c'*h | |
正棱锥侧面积 | S=1/2c*h' | 正棱台侧面积 | S=1/2(c+c')h' | |
圆台侧面积 | S=1/2(c+c')l=pi(R+r)l | 球的表面积 | S=4pi*r2 | |
圆柱侧面积 | S=c*h=2pi*h | 圆锥侧面积 | S=1/2*c*l=pi*r*l | |
弧长公式 | l=a*r | a是圆心角的弧度数r >0 | 扇形面积公式 | s=1/2*l*r |
锥体体积公式 | V=1/3*S*H | 圆锥体体积公式 | V=1/3*pi*r2h | |
斜棱柱体积 | V=S'L | 注:其中,S'是直截面面积, L是侧棱长 | ||
柱体体积公式 | V=s*h | 圆柱体 | V=pi*r2h |
成人高考院校专业指导专属提升方案
我已阅读并同意 《用户隐私条款》
鉴于网络的特性,本网站将无可避免地与您产生直接或间接的互动关系,故特此说明本网站对用户个人信息所采取的收集、使用和保护政策,请您务必仔细阅读:
信息收集范围
我们根据合法、正当、必要的原则,仅收集为您提供服务所必要的信息。包括:
1、您在使用我们服务时主动提供的信息
(1)您在网站上报名填写的姓名、电话、住址、微信/QQ、备注等信息,包括辅导报名、等网站所有可填写的页面及板块。
(2)您通过电话咨询方式提供的姓名、电话、住址、微信/QQ、备注等信息。
(3)您在使用网上咨询服务所提供的姓名、电话、住址、微信/QQ、备注等信息。
(4)您参与我们线上活动时填写的调查问卷中可能包含您的姓名、电话、地址等信息。
我们的部分服务可能需要您提供特定的个人敏感信息来实现特定功能。
若您选择不提供该类信息,则可能无法正常使用服务中的特定功能,但不影响您使用服务中的其他功能。
若您主动提供您的个人敏感信息,即表示您同意我们按本政策所述目的和方式来处理您的个人敏感信息。
本次报名数据服务由本网站提供,本网站不承担由于内容的不一致性所引起的一切争议和法律责任,报名结果以最终辅导报名系统为准。
信息使用用途
我们严格遵守法律法规的规定及与用户的约定,将收集的信息用于以下用途。若我们超出以下用途使用您的信息,我们将再次向您进行说明,并征得您的同意。
1、通过微信、电话形式建立沟通,向您提供学历咨询服务。
2、满足您的个性化需求。例如,学历途径规划、学历评估等。
3、项目开发和服务优化。例如,通过您的咨询问题及服务过程中您的建议等,优化我们的服务。
4、向您推荐您可能感兴趣的学校、资讯等。
5、学校推荐。例如,我们会根据您的具体要求以您所具备的条件向您推荐合适的院校。
为了让您有更好的体验、改善我们的服务或经您同意的其他用途,在符合相关法律法规的前提下,我们可能将通过某些服务所收集的信息用于我们的其他服务。例如,将您在使用我们某项服务时的信息,用于另一项服务中向您展示个性化的内容或广告、用于用户研究分析与统计等服务。
信息保护
我们仅在本《隐私政策》所述目的所必需的期间和法律法规要求的时限内保留您的个人信息。
本网站将对您所提供的资料进行严格的管理及保护,本网站将使用相应的技术,防止您的个人资料丢失、被盗用或遭篡改。
当政府机关依照法定程序要求本网站披露个人资料时,本网站将根据执法单位之要求或为公共安全之目的提供个人资料。在此情况下之任何披露,本网站均得免责。
由于您将用户密码告知他人或与他人共享注册帐户,由此导致的任何个人资料泄露。任何由于计算机问题、黑客政击、计算机病毒侵入或发作、因政府管制而造成的暂时性关闭等影响网络正常经营之不可抗力而造成的个人资料泄露、丢失、被盗用或被篡改情况时本网站亦毋需承担任何责任。
未成年人保护
本网站将建立和维持一合理的程序,以保护未成年人个人资料的保密性及安全性。本网站郑重声明:任何16岁以下的未成年人参加网上活动应事先得到家长或其法定监护人的可经查证的同意。若您是未成年人的监护人,当您对您所监护的未成年人的个人信息有相关疑问时,请通过与我们联系。
适用范围
我们的所有服务均适用本政策。但某些服务有其特定的隐私指引/声明,该特定隐私指引/声明更具体地说明我们在该服务中如何处理您的信息。如本政策与特定服务的隐私指引/声明有不一致之处,请以该特定隐私指引/声明为准。
您必须完全同意以上协议才能使用本网站的在线报名服务。
未经授权不得转载,如需转载请注明出处。
转载请注明:文章转载自 其它本文关键词:
福建成考网申明:
(一)由于各方面情况的调整与变化本网提供的考试信息仅供参考,敬请以教育考试院及院校官方公布的正式信息为准。
(二)本网注明信息来源为其他媒体的稿件均为转载体,免费转载出于非商业性学习目的,版权归原作者所有。如有内容与版权问题等请与本站联系。联系方式:邮件429504262@qq.com
上一篇:第一页
下一篇:成人高考高起点数学(文)难点讲解(1)