扫一扫加入微信交流群
与考生自由互动、并且能直接与专业老师进行交流、解答。
关注公众号
服务时间08:00-24:00免费课程/题库
微信扫一扫
福建成考属于全国统考,考试科目比较多,不同报考层次的科目不同,数学是高起点的一门科目,考察的知识点较多,为了大家可以在数学中获得高分,下面福建成考网就跟大家分享福建成考高起点数学理科考点:奇偶性与单调性。
函数的单调性、奇偶性是成人高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识。
●难点磁场
(★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.?
●案例探究
[例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值.
命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.
知识依托:主要依据函数的性质去解决问题.
错解分析:题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.
技巧与方法:借助奇偶性脱去“f”号,转化为xcos不等式,利用数形结合进行集合运算和求最值.
解:由 且x≠0,故0
又∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),又f(x)在(-3,3)上是减函数,
∴x-3>3-x2,即x2+x-6>0,解得x>2或x<-3,综上得2
∴B=A∪{x|1≤x≤ }={x|1≤x< },又g(x)=-3x2+3x-4=-3(x- )2- 知:g(x)在B上为减函数,∴g(x)max=g(1)=-4.
[例2]已知奇函数f(x)的定义域为R,且f(x)在[0,+∞)上是增函数,是否存在实数m,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈[0, ]都成立?若存在,求出符合条件的所有实数m的范围,若不存在,说明理由.
命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目.
知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.
错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法.
技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题.
解:∵f(x)是R上的奇函数,且在[0,+∞)上是增函数,∴f(x)是R上的增函数.于是不等式可等价地转化为f(cos2θ-3)>f(2mcosθ-4m), 即cos2θ-3>2mcosθ-4m,即cos2θ-mcosθ+2m-2>0.
设t=cosθ,则问题等价地转化为函数g(t)?=t2-mt+2m-2=(t- )2- +2m-2在[0,1]上的值恒为正,又转化为函数g(t)在[0,1]上的最小值为正.
∴当 <0,即m<0时,g(0)=2m-2>0 m>1与m<0不符;
当0≤ ≤1时,即0≤m≤2时,g(m)=- +2m-2>0
4-2
当 >1,即m>2时,g(1)=m-1>0 m>1.∴m>2
综上,符合题目要求的m的值存在,其取值范围是m>4-2 .
●锦囊妙计
本难点所涉及的问题以及解决的方法主要有:
(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.
(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.
以上就是关于福建成考高起点数学理科考点:奇偶性与单调性的相关内容,考生如果想获取更多关于福建成人高考信息,如成考答疑、报考指南、报名时间、学习方法、报考条件、考试科目、福建成考复习资料、成绩查询、历年真题、备考资料等,敬请关注福建成考网。
成人高考院校专业指导专属提升方案
我已阅读并同意 《用户隐私条款》
鉴于网络的特性,本网站将无可避免地与您产生直接或间接的互动关系,故特此说明本网站对用户个人信息所采取的收集、使用和保护政策,请您务必仔细阅读:
信息收集范围
我们根据合法、正当、必要的原则,仅收集为您提供服务所必要的信息。包括:
1、您在使用我们服务时主动提供的信息
(1)您在网站上报名填写的姓名、电话、住址、微信/QQ、备注等信息,包括辅导报名、等网站所有可填写的页面及板块。
(2)您通过电话咨询方式提供的姓名、电话、住址、微信/QQ、备注等信息。
(3)您在使用网上咨询服务所提供的姓名、电话、住址、微信/QQ、备注等信息。
(4)您参与我们线上活动时填写的调查问卷中可能包含您的姓名、电话、地址等信息。
我们的部分服务可能需要您提供特定的个人敏感信息来实现特定功能。
若您选择不提供该类信息,则可能无法正常使用服务中的特定功能,但不影响您使用服务中的其他功能。
若您主动提供您的个人敏感信息,即表示您同意我们按本政策所述目的和方式来处理您的个人敏感信息。
本次报名数据服务由本网站提供,本网站不承担由于内容的不一致性所引起的一切争议和法律责任,报名结果以最终辅导报名系统为准。
信息使用用途
我们严格遵守法律法规的规定及与用户的约定,将收集的信息用于以下用途。若我们超出以下用途使用您的信息,我们将再次向您进行说明,并征得您的同意。
1、通过微信、电话形式建立沟通,向您提供学历咨询服务。
2、满足您的个性化需求。例如,学历途径规划、学历评估等。
3、项目开发和服务优化。例如,通过您的咨询问题及服务过程中您的建议等,优化我们的服务。
4、向您推荐您可能感兴趣的学校、资讯等。
5、学校推荐。例如,我们会根据您的具体要求以您所具备的条件向您推荐合适的院校。
为了让您有更好的体验、改善我们的服务或经您同意的其他用途,在符合相关法律法规的前提下,我们可能将通过某些服务所收集的信息用于我们的其他服务。例如,将您在使用我们某项服务时的信息,用于另一项服务中向您展示个性化的内容或广告、用于用户研究分析与统计等服务。
信息保护
我们仅在本《隐私政策》所述目的所必需的期间和法律法规要求的时限内保留您的个人信息。
本网站将对您所提供的资料进行严格的管理及保护,本网站将使用相应的技术,防止您的个人资料丢失、被盗用或遭篡改。
当政府机关依照法定程序要求本网站披露个人资料时,本网站将根据执法单位之要求或为公共安全之目的提供个人资料。在此情况下之任何披露,本网站均得免责。
由于您将用户密码告知他人或与他人共享注册帐户,由此导致的任何个人资料泄露。任何由于计算机问题、黑客政击、计算机病毒侵入或发作、因政府管制而造成的暂时性关闭等影响网络正常经营之不可抗力而造成的个人资料泄露、丢失、被盗用或被篡改情况时本网站亦毋需承担任何责任。
未成年人保护
本网站将建立和维持一合理的程序,以保护未成年人个人资料的保密性及安全性。本网站郑重声明:任何16岁以下的未成年人参加网上活动应事先得到家长或其法定监护人的可经查证的同意。若您是未成年人的监护人,当您对您所监护的未成年人的个人信息有相关疑问时,请通过与我们联系。
适用范围
我们的所有服务均适用本政策。但某些服务有其特定的隐私指引/声明,该特定隐私指引/声明更具体地说明我们在该服务中如何处理您的信息。如本政策与特定服务的隐私指引/声明有不一致之处,请以该特定隐私指引/声明为准。
您必须完全同意以上协议才能使用本网站的在线报名服务。
未经授权不得转载,如需转载请注明出处。
转载请注明:文章转载自 其它本文关键词: 福建成考
福建成考网申明:
(一)由于各方面情况的调整与变化本网提供的考试信息仅供参考,敬请以教育考试院及院校官方公布的正式信息为准。
(二)本网注明信息来源为其他媒体的稿件均为转载体,免费转载出于非商业性学习目的,版权归原作者所有。如有内容与版权问题等请与本站联系。联系方式:邮件429504262@qq.com